Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver
نویسندگان
چکیده
We report on a parallel implementation of the Jacobi–Davidson (JD) to compute a few eigenpairs of a large real symmetric generalized matrix eigenvalue problem
منابع مشابه
On a parallel multilevel preconditioned Maxwell eigensolver
We report on a parallel implementation of the Jacobi–Davidson algorithm to compute a few eigenvalues and corresponding eigenvectors of a large real symmetric generalized matrix eigenvalue problem Ax = λMx, Cx = 0. The eigenvalue problem stems from the design of cavities of particle accelerators. It is obtained by the finite element discretization of the time-harmonic Maxwell equation in weak fo...
متن کاملA Bootstrap Algebraic Multilevel Method for Markov Chains
This work concerns the development of an algebraic multilevel method for computing state vectors of Markov chains. We present an efficient bootstrap algebraic multigrid method for this task. In our proposed approach, we employ a multilevel eigensolver, with interpolation built using ideas based on compatible relaxation, algebraic distances, and least squares fitting of test vectors. Our adaptiv...
متن کاملUniversity of Colorado at Denver and Health Sciences Center Preconditioned Eigensolver LOBPCG in hypre and PETSc
We present preliminary results of an ongoing project to develop codes of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems for hypre and PETSc software packages. hypre and PETSc provide high quality domain decomposition and multigrid preconditioning for parallel computers. Our LOBPCG implementation for hypre is publicly available in hy...
متن کاملLarge Scale Eigenvalue Calculations for Computing the Stability of Buoyancy Driven Flows
We present results for large scale linear stability analysis of buoyancy driven fluid flows using a parallel finite element CFD code (MPSalsa) along with a general purpose eigensolver (ARPACK). The goal of this paper is to examine both the capabilities and limitations of such an approach, with particular focus on solving large problems on massively parallel computers using iterative methods. We...
متن کاملA Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation
The Jacobi-Davidson (JD) algorithm recently has gained popularity for finding a few selected interior eigenvalues of large sparse polynomial eigenvalue problems, which commonly appear in many computational science and engineering PDE based applications. As other inner–outer algorithms like Newton type method, the bottleneck of the JD algorithm is to solve approximately the inner correction equa...
متن کامل